THE URBAN PALIMPSEST:
the interplay between the historically
generated layers in urban spatial system and
urban life

Mir Azimzadeh
Göteborg University
Hans Bjur
Göteborg University

Abstract
The visible construct of the contemporary city can be conceived as a palimpsest, a
layered construction displaying formal diversities in the course of historical urban
development. The concealed aspects of the urban palimpsest, however, concern the
configurational properties of the emergent layers in the spatial system of the city with a
close relation to the urban life. This paper outlines the research about the city of
Gothenburg carried out to clarify the properties of the historically generated structural
layers and their impact on the urban life. The spatial system of the city in significant
periods has been analyzed. The original plan layout of the city from 1621 provided a
distributed network of public spaces, which facilitated a distributed pattern of social
contacts in concordance with the requirements of the social life of the urbanites. The
city during the expansion outside the original fortification up to 1920s (following the
huge extension plan of 1866) maintained its structural characteristics as a well
integrated and intelligible system. The vast expansion of the city during the 20th century,
and the urban patterns which emerged in 1960s, adopting the idea of self-contained
housing estates, formed a structural layer with a significant impact on the urban system
with a drastic decrease in global integration. However the historic core was still the
syntactic core of the global system and constituted a highly integrated and intelligible
local area, which, providing a dense pedestrian encounter was the most popular public
space in the city. The analysis of the existing city displays the emergence of a new
historic urban layer during the last three decades. This layer is constituted of a
hierarchic network of high speed traffic routes. The global integration value of the city
has decreased further. The historic core has lost its syntactically central position. This
urban layer, based on car borne commuting, has not improved overlapping and
interconnection of the local urban areas. The accessibility to the local areas has
become much more dependant on the large traffic arteries. The further fragmentation of
the urban fabric has been parallel with the substitution of the walking city with an auto
city, and the move of retail trade to city outskirts and the emergence of external
shopping centres. The analysis of the city of Gothenburg provides knowledge about the
dynamic interrelation between invisible emergent urban layers. This knowledge will be
useful in the planning processes of the ongoing and future urban developments.

Introduction
Palimpsest is a term that denotes a manuscript written over a partly
erased older manuscript in such a way that the old words can be read

Keywords:
Urban palimpsest
Urban spatial configuration
Intangible urban layers

Mir Azimzadeh
Göteborg University
Department of Conservation
Box 130, SE 405 30
Gothenburg, SWEDEN
Phone: +46 31 786 4961
Fax: +46 31 786 4703
mir.azimzadeh@icug.gu.se

Hans Bjur
Göteborg University
Department of Conservation
Box 130, SE 405 30
Gothenburg, SWEDEN
Phone: +46 31 786 5700
Fax: +46 31 786 4703
bjur@icug.gu.se
beneath the new. The concept of palimpsest has recurrently been used to explain the layered construct of architectural monuments and urban morphologies developed through the course of history. This application of the concept of palimpsest is associated with Sigmund Freud’s use of Roman palimpsest to model the structure of human mind. He recognizes a similarity between the way Rome evolved in stages and the mind of the individual person. He suggests that the city of Rome can be imagined not as a human habitation but as a psychical entity with similarly long past, an entity in which nothing that has once come into existence would have passed away and all the earlier phases of development continue to exist alongside the latest one (Freud, 1989).

In the discourse of urban morphology when reference to the concept of palimpsest concerns buildings and the physical appearance of the city, the historic layers and the relation between them are supposed to have a static property. This is also the case in a palimpsest when just the appearance of the layers of partially erased texts is concerned. In this sense cities are not comparable with human mind. However, when the focus is not just put on the appearance of the physical construct of cities but on the intangible underlying spatial systems, deep similarities between cities and human mind, as it is understood by Freud, can be uncovered. Spatial layers in cities and their interrelations, like unconscious and conscious memories in human mind, are dynamic and ever changing. The reference to the metaphor of palimpsest can be useful when the content of the texts, and not just their appearance, is the focus of consideration.

The concept of palimpsest has been used for opening the discussion and directing the attention towards the intangible and dynamic aspects of historical layers in cities. The dynamism of the intangible layers in urban systems is most clearly explained through the concept of spatial configuration, pioneered by the founder of space syntax theory (Hillier & Hanson 1984).

This paper presents the analyses of a large series of models representing different periods of urban development of the city of Gothenburg from its grounding up till now. The configurational evolvement of the whole city and some of its historic parts is discussed. The impact of the characteristic spatial layers on the global system of the city is explained. The focus of the paper is put on the urban layers which have been the outcome of planned developments. The creation of, and interaction between these layers reflect the characteristics and potentials of different planning strategies implemented during the long course of urban development in the city. These strategies are mainly based on three notions of urban design and planning; the continuous street system, the separate self-contained housing state and the hierarchal car borne traffic system.

The Spatial System of the Historic City of Gothenburg and its Early Development within the Original Fortification

The city of Gothenburg was granted its charter in 1621. It was built according to Dutch patterns, with streets and manmade canals in a strictly designed system. Thus, the historic maps of Gothenburg display clearly the formation of oldest layer in the urban spatial system of the city.

Two historic maps from 1644 and 1753 have been used for modelling the street network of the old city of Gothenburg. The first map displays the original layout of the city and the other one shows the latest urban development within the old fortification. There were two parallel north south canals with different length and a third east west canal in the middle of the city. The city had an orthogonal street network. The
Azimzadeh, Bjur: The Urban Palimpsest: The Interplay between the Historically Generated Layers in Urban Spatial System and Urban Life

The analysis of the axial model based on the map from 1644 shows a significant configurational differentiation between the streets, fig 1. The most integrated line is the street along the longer north south canal. This street is clearly distinguished from all other lines. The integration value of this line is 3.65 while the mean integration for the other top most integrated line is 2.43 and the mean integration for the whole system is 1.76. Excluding the most integrated line, all other lines form a very clear grouping concerning the value of global integration. The first group with most integration value contains east west streets which all cross the main street. There is only one exception in this group, the street along the shorter north south canal which is parallel with the most integrated line of the city. The second group consists of all other lines parallel with the main street which are in average shorter than the lines in the first group. All the geographically peripheral lines constitute the third group with the lowest value of integration. In spite of the distinct syntactic position of the main street the original plan layout of the city is a well distributed and highly intelligible system with a value of r-squared of 0.82. The grouping of lines and the distinction of one line is in concordance with the intended pattern of distribution of main urban functions. The main square with the Town Hall is adjacent to the most integrated line and the streets on three sides of the Cathedral belong to the first group of lines.

Figure 1:
Analyzed axial model and local global scattergram of Gothenburg in 1644 (left) and 1753 (right)

The analysis of the axial model based on the map from 1753 shows that the city maintains, with some changes, its original configurational properties during the process of development of the city within the fortification (see fig 1). The mean global integration decreases negligibly from 1.76 to 1.62. But the whole system becomes more intelligible (r-squared increases from 0.82 to 0.87). The syntactic distance between the most integrated line and the other lines becomes shorter. The difference between integration value of this line and the mean integration value of the whole system decreases from
1.97 to 1.7. The pattern of grouping of lines remains, generally, intact. But the peripheral lines on the east edge of the city become more integrated in the global system and move to the second group of lines. The group of the most segregated lines consists of only new peripheral lines on the western outskirt of the city. The configurational changes show more homogeneous distribution of local and global integration value between lines. The changes reflect the economic growth of the city and expansion of economic activities all over the city. These changes are not associated with the emergence of any new urban layer. But they are at the same direction of the later changes which lead to the dissolution of the primary configurational grouping of streets and the establishment of the historic core of the city as a distinct urban layer.

Expansion of the City outside the Fortification

The first building activities in relation to the city outside the moat were carried out on the ‘landeris’ (‘landeries’ were divided plots of land leased out to the burghers of the city for different uses). The structure of the ‘landeri’ was dissolved in the later periods and did not create any urban layer discernable in the existing urban system.

Early Planed Development outside the City Walls, the Formation of Urban Layers

The existing urban district of Haga was the first planned suburb of the city established in the mid-1600s. The district has a complex history. Originally, it was a worker’s quarter. Haga survived a partial demolition in 1690 and expanded extensively until 1920s. It also survived the functionalist comprehensive redevelopment plan of 1936. The area was threatened again by destructive redevelopment plans in late1960s but the demolishing work was stopped by the activists in the ‘Haga group’. The district was gentrified during 1980s maintaining its basic structure. It is now one of the most popular local areas in Gothenburg with a vivid and complex urban life. After the historic core of the city, Haga is the oldest structural layer with an active presence in the urban life of present day Gothenburg.

The analysis of the axial models based on 2 historic maps from 1790 and 1860 displays the evolvement of the historic core and the beginning of the process of alteration of Haga from a suburban enclave into an intelligible local subsystem. The analysis of the 1790 signifies the beginning of the formation of the historic core as a distinct urban layer. Within the walls, the original grouping of lines in terms of global integration value disappears. This grouping does not even exist in the analysis of the city within the walls separated from its surrounding areas. The two top most integrated lines represent two crossing streets, fig 2. They are, syntactically, close to other highly integrated lines (these two lines in the present day Gothenburg are two streets with high concentration of retail activity). However, all the lines within the walls together form a distinct group. These lines constitute an almost intelligible subsystem with a value of r-squared of 0.61 in the context of the global system, although this global system includes the surrounding areas which still lack an urban structure. The planned suburb of Haga, in spite of its internal structure with urban property, does not yet form any sensible substructure in the global system. The group of lines of Haga in the context of the whole system has an r-squared value of 0.37 while this value for the whole system is 0.43. This configurational position of Haga changes remarkably in the later stages of urban development.

After removal of the city walls in the beginning of the 19th century, a park was built on the marshlands on the outer side of the moat, working as a green belt around the old city. The moat was preserved...
with some changes in its course in the area between Haga and the city. Haga had already been densely developed and expanded to the edge of the city on the south. In the map of 1860 Haga is more directly connected to the street network of the old city. The internal spatial system of Haga in this time has acquired a very clear urban character. Its street network constitutes a well integrated and highly intelligible system (with a mean global integration of 1.5 and r-squared of 0.81). Interestingly, the most integrated lines of the spatial system of Haga...
from this time form a slightly winding street in the present day Haga with the highest concentration of boutiques, coffee shops and restaurants. In the analyzed axial model of 1860, Haga constitutes a subsystem with an r-squared of 0.71 (the r-squared of the global system is 0.57). Today, Haga constitutes a highly intelligible local system in the context of the whole city, with an r-squared of 0.61, while the r-squared of the whole city is 0.12 (see fig 7, bottom right).

The original city also continues to strengthen its position as the central subsystem, although in this stage of urban development some of the highly integrated lines are located on the outer side of the moat. The original city in this time has an internal structure with a mean integration value of 1.32 and an r-squared of 0.82. As a subsystem it has a value of intelligibility of 0.80. The city at whole has become more integrated and also more intelligible in comparison to its situation in 1790.

The Implementation of the Comprehensive Expansion Plans, the Dominance of the Notion of Street System in Urban Design

The industrial growth of the last decades of 19th century required a vast urban development. The governors of the town attempted to bring about an overall solution for the town expansion. In 1861 a town planning competition, the first one ever in Sweden, was announced. The competition concerned a large area south and south east of the town. A general plan was provided applying the competition results, and finally confirmed in 1866. The plan defined the pattern of future town growth on the basis of a modified grid layout. The old moat and the large green belt separated the old city and the new area. However, the grid layout was skilfully elaborated connecting the new developments and the street network of the old city. The expansion plan became an extension of the original urban texture. The urban district of Haga and the new expansions were also tied together very well. The urban development according to this plan added a new layer to the urban spatial structure of the city. In the later stages of urban development this layer, in combination with the historic core and Haga, altered to an intelligible subsystem functioning as an expanded city centre. In the axial analysis of the city in 1959, this subsystem acquires an r-squared of 0.51 in the context of the whole city, while the intelligibility of the global system is 0.23.

Two axial models of the city based on the maps from 1890 and 1921 have been analysed, fig 3. The integration of the global spatial structure of the city has increased after the implementation of the major part of the general plan of 1866. This phenomenon does not happen in any of the later stages of urban development of the city. According to the analyses of the mode of 1890, Haga becomes a more intelligible local system with an r-squared of 0.81. This value for the urban subsystem of Haga in 1860 was 0.71. The intelligibility of the global system of the city during this period has decreased.

The analysis of the axial model of 1921 shows a remarkable decrease in the global integration and intelligibility of the urban system. This is because the model includes the incorporated areas on the northern side of the Göta River and distant suburbs. However, the original city, constituting the syntactic core of the global structure, becomes a more distinct and intelligible local system. In the typical scattergram of the local global integration, the dots representing the street network of the historic core in the context of the global structure of the city constitutes a dense group on the right edge of the scattergram. The r-squared for the historic core is 0.70, while the intelligibility of the global system is 0.21 (see fig 3). The original plan layout of the old city and the planned
expansion of the city established the historic core as a long standing urban layer.

Modern Housing Development and Generation of Urban Layers

During 1930s and later decades in 20th century, the political dominance of social democracy and the prevalence of the notion of social engineering had a strong impact on urban planning. The provision of public housing was a central issue. Rapid housing development was not in concordance with the continuous expansion of the urban texture. Projects of new housing areas could be carried out in separate parts of the incorporated lands with large gaps between them. According to the differences in the design principles of these housing areas, their spatial configurations evolved in different ways in the context of the global urban development, generating urban layers with different characteristics.

Street Based Modern Housing Development, the Combination of Functionalist Ideas and the Notion of Street System

In 1930s influential modernist architects in Sweden endeavoured to realize the functionalist urban design ideals. For providing better and equal sunlight condition for houses and vast green areas for inhabitant's recreation, they advocated the dissolution of the street based urban system. Gunnar Asplund, the most famous Swedish functionalist architect in his debates in early 1930s doubts the effectiveness of attempts made for the improvement of spatial
situations in cities within the frame of the old urban forms. He believes that satisfaction of the demands of the new housing can hardly be anticipated if practitioners adhere to their previous understanding of the urban space, the closed square and street space (Asplund 1931).

However, there are implemented housing projects from this time and later periods that reflect the reconciliation of the functionalist urban design ideas and the notion of street system. The case of the housing project of Gubbero in the urban district of Olskroken from 1930s and the project of total redevelopment of Olskroken neighbourhood in 1980s is an example of such reconciliation.

The neighbourhood of Olskroken was formed in the last decade of 19th century (see fig 3). It consisted of rental blocks of flats for the worker class. In the analysed axial models of 1890, the neighbourhood has a well integrated and highly intelligible internal spatial system (with mean integration of 1.52 and r-squared of 0.97). But like Haga in its early stage of development, the neighbourhood does not constitute any sensible local system in the context of the whole city (its r-squared in the context of the global system is 0.27, while the intelligibility of the whole city is 0.43). In the analysed axial models of 1921 the internal structure of Olskroken does not show remarkable change (with mean integration of 1.75 and r-squared of 0.88), but the neighbourhood begins to form a distinct subsystem in the city (its r-squared in the context of the global system becomes 0.33, while the intelligibility of the whole city is 0.21).

In the beginning of 1940s the modern housing project of Gubbero was carried out in Olskroken. The design of Gubbero complex followed the functionalist ideas, incorporating a park in the project. It was built on a land not yet developed. This land constituted a large triangular urban block on the south of the neighbourhood of Olskroken. The plan layout of the new housing project was carefully adapted to the adjacent neighbourhood and surrounding streets. The park was visible and accessible from the street on the south side of the old neighbourhood. This street became the spine of the new local spatial system incorporating the new development.

The analysis of the axial models based on the city map from 1959 shows the changes in the spatial configuration of Olskroken both at local and global level, fig 4. In the internal spatial system of the area the most integrated line has moved from the middle of the old neighbourhood to its southern edge. But this replacement has not a negative functional effect on the neighbourhood, considering the fact that the local public services, including retail activities, were not even placed along the middle street of the neighbourhood before these changes. They were concentrated on the local square of Olskroken which was located on the south west of the area where the most integrated lines converged. The position of the local square is enhanced by the new development. According to the analysis of the 1959 axial model the spatial system of the area, considered separately, has a mean integration value of 1.67 and an r-squared of 0.93. At the global level the area constitutes a distinct subsystem with an r-squared of 0.78 (the r-squared for the whole city is 0.23).

In late 1970s the housing of the old neighbourhood of Olskroken had a very poor condition. A total redevelopment of the neighbourhood became inevitable. All the buildings of the old neighbourhood were demolished and a new housing project was implemented on the cleared land. But the original streets (including old trees) were preserved in the new project. The spatial system of the area of Olskroken from 1940s has remained intact until today, although, to an extent, it has been affected by the building of a large motorway junction near the place of the old local square. In the existing urban
structure of Gothenburg the local area of Olskroken constitutes a very intelligible urban subsystem with an r-squared value of 0.79 (the value of intelligibility of the spatial system of the entire urban region of Gothenburg is today 0.12), (see fig 4). Olskroken, in spite of its relatively simple structure, is a complex urban layer in the context of the global structure of the city. It is a thriving urban area, which not only is well functioning at local level, but also is offering services to a large urban region on its surrounding. The urban quality of Olskroken is undoubtedly based on its configurational properties at local and global level.

Housing Estate Versus Street System, the Generation of the Layer of Segregation

A major part of the existing amount of housing in Gothenburg has been built in a period between 1950s and 1960s. The dominant concept in urban planning in this period was the self-contained housing estates. The notion of interrelated and continuous street network was absent either in the internal layout of these housing estates or in their connection with other parts of the city. Under a rigid and paternalist planning process, a large number of such housing estates were developed isolated from each other on virgin lands far away from the core of the city. The building of the housing estates

Figure 4:

Configurational position of the subsystem of the urban district of Olskroken in the context of the global structure of Gothenburg

Integration map and local global scattergram of the internal structure of Olskroken

Integration map of Gothenburg in 1959

Local global scattergram of Gothenburg in 2004, selected lines are the street network of Olskroken

Local global scattergram of Gothenburg in 1959, selected lines are the street network of Olskroken
was accompanied with a dispersed urban development (taking advantage of the roads that connected the housing estates to the city). The result was the emergence of a structural layer with a determinant impact on the configurational properties of the global urban system of the city.

The analysis of the axial models based on the maps from 1959 and 1965, shows a remarkable decrease in the global integration of the spatial structure of Gothenburg. In 1965 the city is almost 3 times less integrated than it was in 1890. This trend continues even in the later stages of urban development in Gothenburg.

The conducted studies in Gothenburg show that the configurational position of different neighbourhoods in global structure of the city has a close relation to the urban function of these neighbourhoods even at the local level. The two neighbourhoods of Kortedala and Wieselgrenplatsen in Gothenburg represent opposite extremes in this respect. The plan layout of Kortedala followed the design principles decided for the development of housing estates. Kortedala was built between 1953 and 1956. The urban area around the neighbourhood of Wieselgrenplatsen was developed few years earlier with a continuous system of street network. Both neighbourhoods have a planned local centre with the same amenities. Nevertheless, according to a study carried out in 2001, only 46 percent of the inhabitants of Kortedala visit their local centre for their everyday shopping (Klasander 2001). This percentage for the other neighbourhood is more than twice as large. Wieselgrenplatsen, in contrast to Kortedala, has a locally shallow structure which is well integrated in the global structure of the city. In the analyzed axial model of 1965, Wieselgrenplatsen constitutes a local subsystem in the context of the whole city with a value of intelligibility of 0.61 (r-squared for the global system is 0.21), fig 5. This value for Kortedala is 0.12, which is even lower than the r-squared value for the whole city. The analysis of the axial model based on the 2004 map of the city shows that the spatial segregation of Kortedala in the global system of the city has been deepened. In the typical local global scattergram of this model the cluster of dots representing the lines of the local area of Kortedala becomes more dispersed and takes more distant from the

Figure 5:
The neighbourhoods of Wieselgrenplatsen and Kortedala in the city of Gothenburg.
right edge of the scattergram. The r-squared for Kortedala is just 0.07 (r-squared for the whole city is now 0.13). There is even a decrease of in the difference between r-squared value for the local area and the value for the global system comparing the two models of 1965 and 2004. These configurational properties are almost common to all of the housing estates of 1950s and 60s. They constitute an urban layer of anonymity and segregation.

The Layer of the Hierarchical Traffic System

A major urban layer that has developed in the recent decades can be defined as the network of motorways and other high speed traffic routes. The development of this layer has had a clear impact on both the global structure of the city and on the local urban systems. The new structural layer, emphasizing on car based global movement, has not improved overlapping and interconnection of the local urban areas. The continuity of the older urban texture has been further interrupted, resulting in a vulnerable global urban structure characterised by very low integration and intensive dependence on limited links of a network of highways. In this process the self-contained housing estates developed in the previous periods have become more segregated in the global spatial system of the city.

The investigation of the existing urban system in Göteborg has been carried out in different steps by analysing 5 separate models. The first model consists of first grade highways. The second model is created by superimposing the network of second grade roads and highways in the traffic system over the lines of the first model and so on. The fifth model comprehends the entire urban grid from the main highways to the local streets. The sequential analysis of the models and the comparison between them reveals the hierarchical properties of the spatial structure of the city very clearly, fig 6. Configurational positions of lines in different models do not change. For example the most integrated lines in the first model retain their high value of integration in all other models.

Figure 6:
The existing urban spatial structure of Gothenburg

The historic core of Gothenburg, which until late 1960s constituted the syntactic core of the city, has lost this position. It has moved to less integrated zones in the global structure of the city, fig 7. In the
analyzed axial model of 2004, the absolute value of r-squared for the historic core of the city has decreased to 0.61. The intelligibility of the global system has also decreased to 0.12 (these values in the 1965 model were 0.77 and 0.21 respectively). The historic core as a local area has become relatively less intelligible in the context of a globally less intelligible system. This has also happened to the local area of the expanded city centre, which contains the historic core, Haga and the urban areas developed according to the general plan of 1960s. However, the historic core and Haga independently, and the whole city centre are still urban subsystems with relatively high intelligibility in the context of the global system, although their configurational position was not enhanced by global development of the city. This depends, undoubtedly, on the robustness of their original spatial structure.

In the analyzed axial model of 2004 the most integrated lines in the system have moved to the central segments of the large traffic arteries, including a sub-river tunnel with few and controlled connections to the local areas (see fig 6). The group of lines that constitutes the motorways, on the top of the hierarchic traffic system, and second grade high speed traffic routes forms a continuous network. In the global structure of the city, these lines together have a mean global integration much higher than the mean global integration of the whole system. But, contrarily, the value of mean local integration of these lines is much lower than this value for the whole city. In the typical local global scattergram of the city the cluster of dots representing these lines is located on bottom right of the scattergram. This condition is even maintained in the system that includes also the 3rd grade traffic routes. The cluster of dots in the scattergram expands a little towards the left but not upward. The creation of a system with high global weight, and independent from local spatial system is an almost new phenomenon in modern urban development. It can be compared with the development of subway systems in cities.

A special property of the existing urban structure of Gothenburg concerns the lines that connect the urban areas on the two sides of Göta River. In the large urban region of Gothenburg, these lines include the sub-river tunnel and 4 bridges. The small bridges that were developed over the moat were an extension of the original urban
texture and were well integrated into the local areas. But in the case of the connections between the two sides of the river, neither the bridges, nor the sub-river tunnel, are embedded in the local urban areas. The tunnel has a determinant position in the global structure of the city. This is displayed both in the analysis of the axial model that contains the motorways and the second grade traffic routes, and the model of the entire city. In the first model, the omission of the tunnel causes 16% decrease in the global integration, while this decrease after the omission of all the 4 bridges together is 10%. These figures in the model of the whole city become 3.2 and 2.7 respectively. The omission of the oldest bridge (built in 1937), in spite of its more central position, has almost no effect on the global system. The decrease in the global integration after the omission of this bridge is just 0.002%.

Figure 8: Geographic and configurational position of shopping centres in Gothenburg

The planned development of the new urban layer of the hierarchical traffic system during the recent decades has been concomitant with a trend in relocation of urban functions. A series of shopping centres has emerged on the outskirt of the dense urban texture, along the main highways. Today, there are eight of such shopping centres. They are all located along the motorways on the top of the hierarchical traffic system or along the second grade high speed routs, fig 8. Two of these shopping centres were local centres in the urban region of Gothenburg and were developed drastically when highways cut through the area in their adjacency. Except these two shopping centres, which have retained a connection with the local system of their surrounding, the others have emerged mostly as enclaves isolated from their surrounding areas. The large shopping centre of Kållered in the southern region of Gothenburg is a representative example in this concern. This shopping centre and its surrounding residential area, in spite of their equal geographic location in the urban region of Gothenburg, are syntactically very distant from each other. In the typical local global scattergram of the whole urban region the dot representing a segment of the motorway which provides access to this
shopping centre is located completely isolated from the cluster of dots representing the streets of the surrounding residential area. The isolated dot displays the much higher global integration value and much lower local integration value, compared to the mean global and local integration value of the streets of the residential area. The shopping centre is functioning globally not locally.

Concluding Comment

In Gothenburg, in spite of dispersion of the city during a long period of urban development, we are witnessing a social trend towards re-centralisation. The most construction projects and housing developments in the recent decade have been carried out in the central regions of Gothenburg, filling the lacunas left in the urban texture. This can be an addition of new layer/layers to the urban palimpsest. To control this process so that it improves the urban qualities in both local and global level, there is a need for an objective understanding of the dynamic interrelation between the intangible (configurational) layers in the urban spatial system. The main intension of this paper is widening the perspective of this kind of understanding.

References

Freud, S., 1979, Civilization and Its Discontents, London

